
Security Audit Report for Wrapped Tokens
Contracts

Date: November 01, 2023

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 2

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Additional Recommendation . 4

2.1.1 Remove duplicate checks . 4

2.1.2 Prevent accidental native token transfers . 5

2.2 Note . 6

2.2.1 Potential centralization risk . 6

2.2.2 Ensure the proper initialization of ExchangeRateUpdater and MintForwarder 6

2.2.3 Ensure the proper configuration of maxAllowance 6

i

Report Manifest

Item Description
Client Crypto.com
Target Wrapped Tokens Contracts

Version History

Version Date Description
1.0 November 01, 2023 First Release

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repositiory of Wrapped Tokens Contracts of Crypto.com. The

Wrapped Tokens Contracts serve as ERC20 token contracts representing staked and generic assets.

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The MD5 values of the files during the audit

are shown in the following table. Our audit report is responsible for the code in the initial version (Version

1), as well as new code (in the following versions) to fix issues in the audit report.

Version 1: File md5

wrapped-tokens-os-main.zip 9f295e3251b819cbf8ea299bff769292

contracts/wrapped-tokens/MintUtil.sol 40c97260847ed5c094da04aa921e91b1

contracts/wrapped-tokens/MintForwarder.sol c729f40e147f19273a29c75a59e5f955

contracts/wrapped-tokens/FiatTokenProxy.sol f7ee7d926a4d31b39e154ac7ed5000cf

contracts/wrapped-tokens/RateLimit.sol 8ef7cad260fa577ea080d157e5ca9bdd

contracts/wrapped-tokens/staking/ExchangeRateUtil.sol ec28a374455abc949ec05c5a2d4334d1

contracts/wrapped-tokens/staking/ExchangeRateUpdater.sol c08e90496bafa47d86c3e4cd8759bca7

contracts/wrapped-tokens/staking/LiquidETHV1.sol 96f5ff1ef834bd57d14251f99ea61341

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

2

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 1 and Common Weakness Enumeration 2.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.2.

Table 1.2: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

1https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
2https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we do not find potential issues. Besides, we also have two recommendations and three
notes.

- Recommendation: 2

- Note: 3

ID Severity Description Category Status
1 - Remove duplicate checks Recommendation Acknowledged
2 - Prevent accidental native token transfers Recommendation Acknowledged
3 - Potential centralization risk Note -

4 -
Ensure the proper initialization of
ExchangeRateUpdater and MintForwarder

Note -

5 -
Ensure the proper configuration of
maxAllowance

Note -

The details are provided in the following sections.

2.1 Additional Recommendation

2.1.1 Remove duplicate checks

Status Acknowledged

Introduced by Version 1

Description The check on Line 72-75 that verifies newOwner address is non-zero is redundant, as this

validation is already performed in the transferOwnership function.

67 function initialize(address newOwner, address newTokenContract)

68 external

69 onlyOwner

70 {

71 require(!initialized, "MintForwarder: contract is already initialized");

72 require(

73 newOwner != address(0),

74 "MintForwarder: owner is the zero address"

75);

76 require(

77 newTokenContract != address(0),

78 "MintForwarder: tokenContract is the zero address"

79);

80 transferOwnership(newOwner);

81 tokenContract = newTokenContract;

82 initialized = true;

83 }

Listing 2.1: MintForwarder.sol

The same issue also exists in the initialize function of the ExchangeRateUpdater contract.

4

66 function initialize(address newOwner, address newTokenContract)

67 external

68 onlyOwner

69 {

70 require(

71 !initialized,

72 "ExchangeRateUpdater: contract is already initialized"

73);

74 require(

75 newOwner != address(0),

76 "ExchangeRateUpdater: owner is the zero address"

77);

78 require(

79 newTokenContract != address(0),

80 "ExchangeRateUpdater: tokenContract is the zero address"

81);

82 transferOwnership(newOwner);

83 tokenContract = newTokenContract;

84 initialized = true;

85 }

Listing 2.2: ExchangeRateUpdater.sol

Impact N/A

Suggestion Remove duplicate checks accordingly.

2.1.2 Prevent accidental native token transfers

Status Acknowledged

Introduced by Version 1

Description The FiatTokenProxy contract cannot process native token transfers for current design. How-

ever, the fallback function (in the inherited Proxy contract) only reverts when msg.sender is admin. This

poses a risk where users accidentally send native tokens to the contract and have their funds locked. The

locked assets can only be withdrawn by upgrading the contract, which brings extra costs.

99 function _fallback() internal {

100 _willFallback();

101 _delegate(_implementation());

102 }

Listing 2.3: Proxy.sol

166 function _willFallback() internal override {

167 require(

168 msg.sender != _admin(),

169 "Cannot call fallback function from the proxy admin"

170);

171 super._willFallback();

172 }

Listing 2.4: AdminUpgradeabilityProxy.sol

5

Impact The accidentally transferred assets are locked until an upgrade is performed.

Suggestion Revise the code logic accordingly.

2.2 Note

2.2.1 Potential centralization risk

Description The owner of the FiatTokenProxy contract currently has the authority to assign privileged

roles, including masterMinter, pauser, blacklister, etc. Additionally, the owner-assigned rescuer can with-

draw ERC20 tokens from the contract via the rescueERC20 function. This concentration of privileges to

the owner account raises centralization risks. If the private key of the owner is compromised, it could be

abused to conduct misbehavior.

Feedback from the Project To mitigate risk of centralization, private key will be held by a MPC wallet of

crypto.com and we will build a better on-chain contract monitoring.

2.2.2 Ensure the proper initialization of ExchangeRateUpdater and MintForwarder

Description In the ExchangeRateUpdater and MintForwarder contracts, the initialize function can only

be called by the contract owner. If using the proxy pattern, the proxy contract must store the current owner

in the same storage slot. Otherwise, this initialize function could never be executed to initialize the

contracts.

2.2.3 Ensure the proper configuration of maxAllowance

Description The configureCaller function in the RateLimit contract allows the owner to add or update

a caller. If the caller’s maxAllowance is set excessively high, there is a potential overflow risk when the

_getReplenishAmount function calculates the amount to replenish the caller’s allowance (lines 201-202).

This can cause the _getReplenishAmount function to revert, preventing the allowance from being replen-

ished as expected. To prevent this, the contract owner should thoughtfully configure the maxAllowance.

115 function configureCaller(

116 address caller,

117 uint256 amount,

118 uint256 interval

119) external onlyOwner {

120 require(caller != address(0), "RateLimit: caller is the zero address");

121 require(amount > 0, "RateLimit: amount is zero");

122 require(interval > 0, "RateLimit: interval is zero");

123 callers[caller] = true;

124 maxAllowances[caller] = allowances[caller] = amount;

125 allowancesLastSet[caller] = block.timestamp;

126 intervals[caller] = interval;

127 emit CallerConfigured(caller, amount, interval);

128 }

Listing 2.5: RateLimit.sol

6

193 function _getReplenishAmount(address caller)

194 internal

195 view

196 returns (uint256)

197 {

198 uint256 secondsSinceAllowanceSet = block.timestamp -

199 allowancesLastSet[caller];

200
201 uint256 amountToReplenish = (secondsSinceAllowanceSet *

202 maxAllowances[caller]) / intervals[caller];

203 uint256 allowanceAfterReplenish = allowances[caller] +

204 amountToReplenish;

205
206 if (allowanceAfterReplenish > maxAllowances[caller]) {

207 amountToReplenish = maxAllowances[caller] - allowances[caller];

208 }

209 return amountToReplenish;

210 }

Listing 2.6: RateLimit.sol

7

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Additional Recommendation
	2.1.1 Remove duplicate checks
	2.1.2 Prevent accidental native token transfers

	2.2 Note
	2.2.1 Potential centralization risk
	2.2.2 Ensure the proper initialization of ExchangeRateUpdater and MintForwarder
	2.2.3 Ensure the proper configuration of maxAllowance

		2023-11-01T23:15:35+0800
	BlockSec Audit Team

