Atomic Proxy Cryptography

Matt Blaze Martin Strauss
AT&T Labs — Research
Florham Park, NJ 07932

{mab,mstrauss}@research.att.com

DRAFT - 2 November 1997 — DO NOT RE-DISTRIBUTE*

Abstract

This paper introduces atomic proxy cryptography, in which an atomic prozy function, in
conjunction with a public prozy key, converts ciphertext (messages in a public key encryption
scheme or signatures in a digital signature scheme) for one key (ki) into ciphertext for another
(k2). Proxy keys, once generated, may be made public and proxy functions applied in untrusted
environments. Various kinds of proxy functions might exist; symmetric atomic proxy functions
assume that the holder of k2 unconditionally trusts the holder of ki, while asymmetric proxy
functions do not. It is not clear whether proxy functions exist for previous public-key cryptosys-
tems. Several new public-key cryptosystems with symmetric proxy functions are described: an
encryption scheme, which is at least as secure as Diffie-Hellman, an identification scheme, which
is at least as secure as the discrete log, and a signature scheme derived from the identification
scheme via a hash function.

1 Introduction

1.1 Overview

A basic goal of public-key encryption is to allow only the key or keys selected at the time of
encryption to decrypt the ciphertext. To change the ciphertext to a different key requires re-
encryption of the message with the new key, which implies access to the original cleartext and to a
reliable copy of the new encryption key. Intuitively, this seems a fundamental, and quite desirable,
property of good cryptography; it should not be possible for an untrusted party to change the key
with which a message can be decrypted.

This paper, on the other hand, investigates the possibility of atomic proxy functions that convert
ciphertext for one key into ciphertext for another without revealing secret decryption keys or
cleartext messages. An atomic proxy function allows an untrusted party to convert ciphertext
between keys without access to either the original message or to the secret component of the old
key or the new key. In proxy cryptography, the holders of public-key pairs A and B create and
publish a prozy key ma—,p such that D(II(E(m,es),Ta-pB),dB) = m, where E(m,e) is the public
encryption function of message m under encryption key e, D(c,d) is the decryption function of
ciphertext ¢ under decryption key d, II(c,) is the atomic proxy function that converts ciphertext

*Current draft available at ftp://ftp.research.att.com/dist/mab/proxy.ps

¢ according to proxy key w, and es,ep,d4,dp are the public encryption and secret decryption
component keys for key pairs A and B, respectively. The proxy key gives the owner of B the
ability to decrypt “on behalf of” A; B can act as A’s “proxy.” In other words, the II function
effectively allows the “atomic” computation of E(D(c,d4),ep) without revealing the intermediate
result D(c,d4).

We consider atomic proxy schemes for encryption, identification and signatures. An encryption
proxy key w4, p allows B to decrypt messages encrypted for A and an identification or signature
proxy key m4_,p allows A to identify herself as B or to sign for B (i.e., transforms A’s signature
into B’s signature). Generating encryption proxy key m4_,p obviously requires knowledge of at
least the secret component of A (otherwise the underlying system is not secure) and similarly
generating identification or signature proxy key m4_, g requires B’s secret, but the proxy key itself,
once generated, can be published safely.

1.2 Categories of proxy schemes

Encryption proxy functions (and similarly but contravariantly, identification or signature proxy
functions) can be categorized according to the degree of trust they imply between the two key
holders. Clearly, A must (unconditionally) trust B, since the encryption proxy function by definition
allows B to decrypt on behalf of A. Symmetric proxy functions also imply that B trusts A, e.g.,
because dp can be feasibly calculated given the proxy key plus d4. Asymmetric proxy functions
do not imply this bilateral trust. (Note that this model implies that proxy cryptography probably
makes sense only in the context of public-key cryptosystems. Any secret-key cryptosystem with
an asymmetric proxy function could be converted into a public-key system by publishing one key
along with a proxy key that converts ciphertext for that key into ciphertext for a second key (which
is kept secret.))

We can also categorize the asymmetric proxy schemes that might exist according to the conve-
nience in creating the proxy key. In an active asymmetric scheme, B has to cooperate to produce
the proxy key ma_,p feasibly, although the proxy key (even together with A’s secret key) might
not compromise B’s secret key. In a passive asymmetric scheme, on the other hand, A’s secret key
and B’s public key suffice to construct the proxy key. Clearly, any passive asymmetric scheme can
be used as an active asymmetric scheme, and any asymmetric scheme can be used as a symmetric
scheme.

Finally, we can distinguish proxy schemes according to the “metadata” they reveal about the
identity of the keys being transformed. Transparent proxy keys reveal the original two keys to a
third party. Translucent proxy keys allow a third party to verify a guess as to which two keys are
involved (given their public keys). Opaque proxy keys reveal nothing, even to an adversary who
correctly guesses the original keys (but who does not know the private keys involved).

[

1.3 Proxy schemes in theory and practice

The proxy relationship is necessarily transitive. If there are public proxy keys m4_,p and mp_,¢,
then anyone can compute a proxy function for A — C. Symmetric proxy schemes further establish
equivalence classes of keys where the secret component of any key can be used to decrypt messages
for any other key in the same class. Note that creating a single symmetric proxy key between a
key in one class and a key in another effectively joins the two classes into one.

The notion of proxy cryptography is a rather natural generalization of public-key cryptography
and has some pleasing theoretical properties. The proxy schemes we consider below have the
additional property that anyone can use the proxy key m4_,p to transform the public key of A to
the public key of B. For such proxy schemes, as we will see in the various examples below, certain
aspects of the security of publishing a proxy key actually follow from the fact that anyone, trusted
or not, can use a proxy key to transform ciphertext and keys.

For example, suppose random messages m and m’ are encrypted with random secret keys a and
bas E(m,a), E(m',b). Suppose that knowing the proxy key m4_, g enables Eve, who knows neither
a nor b, to recover m or m'. Then, ignoring B altogether and starting with just two (presumably
secure) ciphertexts E(m,a) and E(m’,a), Eve can pick a random proxy key r = m4_,¢ for some
Q, transform E(m',a) to E(m',q) (where ¢ is the unknown secret key of @), transform A’s public
key into @)’s public key, and proceed with the hypothesized cryptanalysis. We conclude that if it
is safe for A to publish k messages then it is safe for A and B to publish a total of k messages and
to publish a proxy key, provided only that Eve can successfully apply the proxy key to transform
ciphertext and public keys.

Because proxy keys are tied to specific key pairs, it is not necessary in many applications to
certify or otherwise take special care in distributing them (except to prevent denial-of-service).
In particular, it is generally sufficient to rely on the certification and trust established in A (for
encryption) or B (for signatures) when using proxy key w4, p, since a valid proxy key can by
definition only be generated with the cooperation of the owner. Furthermore, the proxy function
can be safely applied at any convenient time or place, by the message’s sender or receiver, or at
any intermediate (and possibly untrusted) point in the network.

Proxy functions potentially also have practical utility for key management in real systems. For
example, some pieces of secure hardware (e.g., smartcards) limit the number of secret keys that can
be stored in secure memory, while some applications might require the ability to decrypt messages
for more keys than the hardware can accommodate. With proxy cryptography, once a new key
is created and a corresponding proxy key generated, the secret component of the old (or new)
key can be destroyed, with the (public and externally-applied) proxy key maintaining the ability
to decrypt for both. In effect, proxy functions allow us to increase the number of public keys
without also increasing the number of secret bits or the amount of secret computation. Because
proxy functions can be computed anywhere, messaging systems, such as electronic mail, can proxy
“forward” messages encrypted with one key to a recipient who holds a different key. Proxy functions
make it possible to associate a single key with a network or physical address but still decrypt
messages forwarded (and proxied) from other addresses. Finally, proxy functions effectively allow
changing or adding a key without obtaining new certificates or altering the distribution channel
for the previous public key; this could be useful when it is difficult to distribute or certify new
keys (e.g., old keys were published in widely-distributed advertisements or embedded in published
software, or the certification authority charges high fees for new certificates).

1.4 Security of proxy schemes and ad hoc substitutes

If Alice wants Bob to be able to read her mail, instead of issuing a proxy key she might just
give Bob her secret key (perhaps, obviating the need to involve Bob, by encrypting it in Bob’s
public key and publishing it). This would be inferior to using a proxy scheme for several reasons.
First, as discussed above, Bob’s computing environment may be limited and therefore incapable

of automatically processing encrypted secret keys; any new software to decrypt and manage such
keys would have to run within the environment trusted by Bob. Proxy processing, on the other
hand, can take place entirely outside of Alice’s and Bob’s trusted environments and without their
active involvement. Furthermore, encrypting one’s secret key with another’s public key is not in
general secure. The cryptosystem we present below, a variant! of E1Gamal, is thought to be secure
in part because the cryptanalysis problem is random-self-reducibile—which allows one to assert
mathematically that recovering m from the public information (e,, E(m, e,), €p) is hard on average
if it is hard at worst. The task of recovering m from (ey, E(m,e,), E(d,,ep), €p), however, may be
considerably easier since E(d,,€ep), in the context of e, and ep, may leak information about d,—
specifically, the new cryptanalysis problem is probably not random-self-reducible and due to the
problem’s obscurity it is not clear what, if any, mathematical guarantees of security can be given.
By contrast, the proxy scheme we give below is just as strong as the underlying ElGamal-like
cryptosystem.2

1.5 Related work

A natural question to ask is whether there exist atomic proxy functions (and feasible schemes to
generate proxy keys) for any public key cryptosystems.

Previous work on delegating the power to decrypt has focused on developing efficient trans-
formations that allow the original recipient to forward specific ciphertexts to another recipient.
Mambo and Okamoto[MO97] develop this formulation and give efficient transforms (more efficient
than decryption and re-encryption) for EIGamal and RSA. Mambo, Usuda and Okamoto[MUO96]
apply a similar notion to signature schemes.

While such schemes have value from the standpoint of efficiency, they are not, however, “atomic
proxy cryptosystems” by our definition because the transforming function must be kept secret
and applied online by the original keyholder on a message-by-message basis (the schemes are not
atomic). The security semantics of these systems are essentially the same as a decryption operation
followed by a re-encryption operation for the new recipient. Our formulation of proxy cryptography
is distinguished from the previous literature by the ability of the keyholder to publish the proxy
function and have it applied by untrusted parties without further involvement by the original
keyholder.

2 Proxy encryption

Although the problem of proxy cryptography seems like a natural extension of public-key cryptogra-
phy, existing cryptosystems do not lend themselves to obvious proxy functions. RSA[RSAT78] with a
common modulus is an obvious candidate, but that scheme is known to be insecure[Sim83]|[DeL84].
Similarly, there do not appear to be obvious proxy functions for many of the previous discrete-log-

'"David Wagner notes that our proxy scheme can be extended to work with standard ElGamal[EIG85] encryption.

2Note that Bob of this example may be a government mandating that Alice provide him with access to her key. It
has been argued that such a scheme makes the system as a whole less trustworthy due to the extra engineering effort
involved; we argue here that in the case of random-self-reducible cryptosystems such as ElGamal variants, requiring
Alice to encrypt her secret key using the government’s public key may also weaken the underlying cryptosystem in
the precise mathematical sense of spoiling the random-self-reducibility.

based cryptosystems. This is not to say, of course, that proxy functions for existing systems do not
exist, only that we have not discoverd them.

We now describe a new secure discrete-log-based public-key cryptosystem that does have a
simple proxy function. The scheme is similar in structure to ElGamal encryption[EIG85], but with
the parameters used differently and the inverse of the secret used to recover the message. (This
approach has merit beyond proxy encryption; [Hug94| proposed a Diffie-Hellman-like key agreement
protocol based on the inverse of the secret, which allows a message’s sender to determine the key
prior to identifying its recipient).

2.1 Cryptosystem X (encryption)

Let p be a prime of the form 2¢g + 1 for a prime g and let g be a generator in Z7; p and g are global
parameters shared by all users. A’s secret key a, 0 < a < p — 1, is selected at random and must
be in Z3,, i.e., relatively prime to p — 1. (A also calculates the inverse a ! mod 2¢). A publishes
the public key ¢g* mod p. Message encryption requires a unique randomly-selected secret parameter
k € Z3,. To encrypt m with A’s key, the sender computes and sends two ciphertext values (c1,c9):

¢t = mg* modp
c2 = (¢)* modp
Decryption reverses the process; since
-1
&) =g" (mod p)

it is easy for A (who knows a~!) to calculate ¢*¥ and recover m:
-1
m = cl((cga))_1) mod p

The speed of the scheme is comparable to standard ElGamal encryption, although initial key
generation requires the additional calculation and storage of a .

2.2 Symmetric proxy function for X

Observe that the ¢; ciphertext component produced by Cryptosystem X is independent of the
recipient’s public key. Recipient A’s key is embedded only in the ¢ exponent; it is sufficient for a
proxy function to convert ciphertext for A into ciphertext for B to remove A’s key a from ¢y and
replace it with B’s key b. Part of what a proxy function must do, then, is similar to the first step
of the decryption function, raising ¢ to a~! to remove a. The proxy function must also contribute
a factor of b to the exponent. Clearly, simply rasing ¢, to ¢! and then to b would accomplish this,
but obviously such a scheme would not qualify as a secure proxy function; anyone who examines
the proxy key learns the secret keys for both A and B.

This problem is avoided, of course, by combining the two steps into one. Hence, the proxy key
Ta_p is a~ b and the proxy function is simply ¢4~ 7. Note that this is a symmetric proxy function;
A and B must trust one another bilaterally. B can learn A’s secret (by multiplying the proxy key
by b 1), and A can similarly discover B’s key. This proxy function is also translucent; the proxy
key does not directly reveal A or B, but anyone can verify a guess by encrypting a message with
A’s public key, applying the proxy function, and comparing the result with the encryption of the
same message (with the same k) with B’s public key. Observe that applying the proxy function is
more efficient than decryption and re-encryption, in that only one exponentiation is required.

2.3 Security of X

First, we show that X is secure—that cleartext and secret keys cannot be recovered from ciphertext
and public keys. Beyond that, we also show that publishing the proxy key compromises neither
messages nor secret keys. Since recovering a secret key enables an adversary to recover a message
and since cryptanalysis is easier with more information (i.e., a proxy key), it is sufficient to show
that no cleartext is recoverable from ciphertext, public keys, and proxy keys. Specifically, we will
show that the problem of recovering m from

b k ak —1; -1
(9%,9°,9%...,mg",g",a” b,a""¢,...).
is at least as hard as Diffie-Hellman.

Theorem 1 Suppose there exists a randomized algorithm f that with probability € > 1/|p|0(1)

succeeds in recovering m from the public information

(9°,9"-...mg*, g**,b/a,...)

where the probability is taken over f’s random choices as well as over m and the parameters a,
b, and k. Then, for each n = 2_""0(1), there exists a randomized polynomial-time algorithm for
Diffie-Hellman that succeeds with probability 1 — 7.

Proof. For simplicity we assume there are only two public keys and one proxy key; the gen-
eral case is similar. Suppose we had an algorithm F that always succeeds in recovering m from
(g%, g%, mgk, g% ,b/a). Then note that on input g%, g¥, we have Fy (g%, ¢¥) = F(g¥,9Y,1,9%,1)7! =
g*/¥, and since Fy(g,¢¥) = g*/¥ we’d have

Fy (g%, ¢%) = Fi(¢%, Fi(g,6")) = Fi(¢%,g"¥) = g*.

In fact, f is only guaranteed to recover m with probability ¢ so we need to use the random-self-
reducibility [Fei93] of the discrete log to achieve our objective.
On input g%, ¢¥ for z,y € Z3, let fi pick r,s,¢,u € Z3, at random and query

(@™, 9%, g, g"*, s/r).

By hypothesis, with probability ¢ we get g'~(*®/("%) from which f; can recover ¢g*/¥. Since
fi(g,9¥) = g'/¥ we can define f> by

f2(9",9%) = f1(¢°, f1(9,9%));

this is equal to
fig",g'") = g

with probability at least €.

Our next step is to construct an algorithm that runs correctly with high probability on most
inputs in Z3,. For this, we define the algorithm f3 (¢%,9Y), z,y € Zq, as follows. Pick 7, 5,1, u at ran-
dom with 7, s,u € Z3, and 0 < t < 2q even. Compute fo(g"", g*¥) = g"**¥*¢ and fa(gltta)/u, guyy =
gty"'my"'c' for some ¢, ¢’ that depend on the respective input to fo. Check whether (g”zy‘“)V TS =

(g T29+<) /gt and is of the form g% for z € Z3, and if so output the common value, otherwise
abort.

We need to show that the probability that f3 outputs the correct answer is substantial and the
probability that it outputs an incorrect answer is negligible. Note that the inputs to fo are random,
so, by hypothesis, at least €* of the time ¢ = ¢ = 0 and therefore f3 will answer correctly. For f3 to
answer incorrectly, we must have ¢,c # 0 and ¢/rs = ¢/. Note also that in this case ¢ and ¢ must
be even so that zy + ¢’ = xy + ¢/(rs) are in Z3,. Even conditioned on the four inputs to two calls
to fa, the six random variables 7, s,t,u, z,y have two degrees of freedom left, and it is easy to see
that r and s and therefore rs remain uniformly distributed. Thus, ¢/rs is uniformly distributed
among even numbers modulo 2¢ and only equals ¢’ with probability 1/¢q. Thus if we repeat f3 a
total of O(—logn)/e* times we will have a probability 1 — 7 of a correct answer and only a tiny
chance of getting any incorrect answer.

Next, we show how to construct an algorithm f4(g%, ¢¥) that succeeds, with high probability,
on all inputs g%, g% such that z,y € Z3,. Pick r, s at random from ZJ, and compute f3(g"*, gov)/rs,
The input to f3 is uniformly distributed, so by hypothesis f3(g"*, g*¥) = ¢"5*¥ with high probability
and we recover g*Y.

Before considering general g%, g¥ we recall some facts about arithmetic modulo 2q. The integers
modulo 2¢ consist of 0, ¢, (¢ — 1) multiples of 2 (other than 0), and (¢ — 1) invertible elements (the
odd numbers other than ¢). Given an input g” where g is a primitive element modulo p = 2¢ + 1,
one regards £ modulo 2q. We can learn whether z is invertible from ¢®: If £ = 0 then g% = 1,
if z = g then ¢ = —1, if z is odd then (¢°)? = g9 = —1 and if = is even then (¢%)? = ¢° = 1.
(Raising ¢g” to the power ¢ is polynomial-time, but expensive. However, we do not need to do this
when using the cryptosystem.)

Finally, consider general input g*,¢¥. The cases ¢ = 0,z = q or y = 0,y = ¢q are easy to detect
and handle, so we assume that we are not in one of these cases. We can determine s and t in
{0,1} so that = + sq,y +tq € Z3,. We have g™V = g(@tsa)(yHta) jgrtatysatste® — 4 gle+sa)ytte) —
+£41(g* "9, g¥™%) (and we can determine the sign). O

Similarly one can show that recovering a from (g%, g?, mg*, g**,b/a) is as hard as the discrete
log, so publishing the proxy key does not compromise a—mnot even to the level of Diffie-Hellman.

3 Proxy identification

In this section we describe a discrete-log-based identification scheme. With p, g, a as before, Alice
wishes to convince Charlotte that she controls a; Charlotte will verify using public key g*. As
before, the proxy key w4, p will be a/b—it will be safe to publish a/b and Alice and Charlotte can
easily use a/b to transform the protocol so Charlotte is convinced that Alice controls b.

Note that in the case of a secure identification proxy key that transforms identification by A into
identification by B, it is B whose secret is required to construct the proxy key because identification
as B should not be possible without B’s cooperation.

3.1 Cryptosystem) (identification)

Let p and g be a prime and a generator in Z;, respectively. Alice picks random a € Z3, to be
her secret key and publishes g* as her public key. Each round of the identification protocol is as

follows:
e Alice picks a random k € Z3, and sends Charlotte s; = g*.
e Charlotte picks a random bit and sends it to Alice.
e Depending on the bit received, Alice sends Charlotte either so = k or sy = k/a.
e Depending on the bit, Charlotte checks that (¢%)% = s; or that g% = g*.

This round is repeated as desired. As with existing protocols, there may be ways to perform
several rounds in parallel for efficiency [FFS88|.

3.2 Symmetric proxy function for)

A symmetric proxy key is simply a/b. Proxy identification is useful as follows: Suppose Charlotte
wants to run the protocol with ¢° instead of ¢®. Either Alice or Charlotte or any intermediary
can use the proxy key to convert Alice’s responses k/a to k/b. Also, either party can transform its
share of the key pair (a,g%) to b or g® before any protocol takes place. Thus Alice and Bob can
authenticate for each other but otherwise the protocol is secure. This proxy scheme is translucent.

3.3 Security of Y

Theorem 2 Protocol Y, with or without proxy keys published, is a zero-knowledge protocol that
convinces the verifier that the prover knows the secret key.

Proof. Without proxy keys published, this protocol is similar to others in the literature (see, e.g.,
[FFS88]). Note that if a prover could produce both k/a and k then the prover could produce a
from g* (perhaps only with significant probability).

Now suppose that a proxy key a/b is published for random public keys g® and ¢, and suppose
that D can then impersonate A. Since D could already generate a random proxy key r and
matching public key g, it follows that D could impersonate A even without knowing a/b and g°.
Thus publishing proxy keys does not weaken the system. O

4 Proxy signature

The concept of proxy cryptography also extends to digital signature schemes. A signature proxy
function transforms a message signature so that it will verify with a public key other than that of the
original signer. In other words, a signature proxy function II(s, 74—, p) with proxy key 74, p trans-
forms signature s signed by the secret component of key A such that V(m,II(S(m, A),74p),B) =
VALID, where S(m, k) is the signature function for message m by key k and V (m, s, k) is the verify
function for message m with signature s by key k.

Again, existing digital signature schemes such as RSA[RSAT78], DSA[NIS91], ElGamal[EIG85],
etc. do not have obvious proxy functions (which, again, is not to say that such functions do not
exist).

As in the case of proxy identification, in order to construct a proxy key that transforms A’s
signature into B’s signature, B’s secret must be required to construct the proxy key because signing
for B should not be possible without B’s cooperation.

Now we will see how to use the proxy identification scheme to construct a proxy signature
scheme. We suppose there exists a hash function h whose exact security requirements will be
discussed below. The parameters p, g, a,b are as before.

4.1 Cryptosystem Z (signature)

To sign a message m, Alice picks ki, ko, ...k; at random and computes ¢g¥!,...g*. Next Alice
computes h(gFt,...g") and extracts £ pseudorandom bits B, ..., 3. For each i, depending on the
i’th pseudorandom bit, Alice (who knows a) computes so; = (k; —mf;) /a; that is, so; = (k;—m)/a
or sp; = k;/a. The signature consists of two components:

s1 = (gkla"'agkl)
ss = ((kr —mph)/a,...,(ke —mp)/a)

To verify the signature, first the §;’s are recovered using the hash function. The signature is then
verified one “round” at a time, where the 7’th round is (gki, (ki—mp;)/a). To verify (gk, (k—mp)/a)
using public key ¢, the recipient Charlotte raises (¢*) to the power (k —mf)/a and checks that it
matches g* / gmB.

4.2 Symmetric proxy function for Z
A symmetric proxy key m4_,p for this signature scheme is a/b. The proxy function II leaves s;
alone and maps each component so; to s2;ma_,p. The proxy scheme is translucent.

4.3 Security of Z

This scheme relies on the existence of a “hash” function h. Specifically,
Assumption 1 We assume there exists a function h such that:

e On random input (g%, m), it is difficult to generate {r;} and {B;} such that

h(garl_'—mﬂl,' o ’garg+mﬂe) = <ﬁ1 ’ﬂ£>'

e More generally, it is difficult to generate such {r;} and {B;} on input g*,m, and samples of
signatures on random messages signed with a.

It is not our intention to conjecture about the existence of such functions h. In particular, we
do not know the relationship between Assumption 1 and assumptions about collision freedom or
hardness to invert.®> We note that this generic transformation of a protocol to a signature scheme
has appeared in the literature [F'S86].

3 Assumption 1 does imply that, on random input ¢¢, it is hard to find (r;) making all the 3;’s zero, i.e., such that
h(g®™,...,9%") =0.

We now analyze Assumption 1. Note that in order to produce a legitimate signature on m that
verifies with g%, a signer needs to produce (¢¥!) and ((k; — mf;)/a). Thus, putting (3;) = h({g"!))
and then (r;) = ((ki — mp;)/a), it is straightforward to see that the signer could actually produce
r;'s and B;’s of the stated type in the course of producing the signature.

While we do not address the security of h, we can state that issuing proxy keys does not weaken
the system.

Theorem 3 Suppose h satisfies Assumption 1. Then, for most b, it is also hard to produce {r;}
and {B;} given additional input a/b,g®, and samples of messages signed with b.

Proof. As above, a signer not having access to b’s messages and proxy keys could simulate this
by choosing a random proxy key r, generating ¢g® = ¢%", and convert some messages signed with a
into messages signed with b. g

5 Conclusions

Intuitively, atomic proxy cryptography is a fairly natural extension of the basic notion of public-key
cryptography. It surely seems plausible, given that there exist cryptosystems that can grant the
ability to encrypt without granting the ability to decrypt, that there might also exist cryptosystems
that can grant the ability to re-encrypt without granting the ability to decrypt. However, it is not
at all obvious whether there exist atomic proxy schemes in general.

Indeed, while this paper has demonstrated that there do exist efficient and secure public-key
encryption and signature schemes with symmetric atomic proxy functions, this observation probably
raises more new questions than it answers. In particular, do proxy functions exist for public-
key cryptosystems based on problems other than discrete-log? (One possibility is that, for some
cryptosystems, proxy functions do exist but it is infeasible to find a proxy key.) More importantly,
we have yet to discover a secure asymmetric proxy function of any kind; asymmetric proxy functions
are probably much more useful in practice, since there are likely many situations where trust is
only unidirectional. Are there cryptosystems for which asymmetric proxy functions exist?

6 Acknowledgements
The authors thank Steve Bellovin, Jack Lacy, Dave Maher, Andrew Odlyzko and David Wagner
for helpful discussions and comments on earlier drafts.

References

[DeL84] J. M. DeLaurentis. A further weakness in the common modulus protocol for the RSA
cryptoalgorithm. Cryptologia, 8:235-239, 1984.

[E1G85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IT-31(4):469-472, July 1985.

[Fei93] Joan Feigenbaum. Locally random reductions in interactive complexity theory. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 13:73-98, 1993.

10

[FFS88] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of Cryptology,
1(2):77-94, 1988.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, Crypto 86, number 263 in LNCS, pages
186-194, Santa Barbara, CA, USA, August 1986.

[Hug94] Eric Hughes. An encrypted key transmission protocol. CRYPTO ’9; Rump Session pre-
sentation, August 1994.

[MO97] M. Mambo and E. Okamoto. Proxy cryptosystems: delegation of the power to decrypt
ciphertexts. IEICE Trans. Fundamentals, E80-A(1), 1997.

[MUOY96] M. Mambo, K. Usuda, and E. Okamoto. Proxy signatures: delegation of the power to
sign messages. IEICE Trans. Fundamentals, E79-A(9), 1996.

[NIS91] NIST. A proposed federal information processing standard for digital signature standard
(DSS). Draft Tech. Rep. FIPS PUB XXX, August 1991.

[RSA78] Ron L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120-126,
February 1978.

[Sim83] G. J. Simmons. A “weak” privacy protocol using the RSA crypto algorithm. Cryptologia,
7:180-182, 1983.

11

